THE IMPORTANCE OF SWEEP RATE IN DC IV MEASUREMENTS

The importance of taking due care in setting up IV measurement sweep rate is explored for the case of a GaAs MESFET and a silicon MOSFET. A numerical metric, called the normalized difference unit (NDU), is shown to be useful in determining appropriate delay factor settings for obtaining robust measurements using a Keithley 4200 DC parameter analyzer. The MESFET device initially exhibited erroneous measurements in the knee region, due to slow trapping effects, while only thermal effects are evident in the MOSFET results.

The DC IV characterization of a device is important in predicting RF operation. DC IV results predict the quiescent bias and low frequency IV characteristics for a device, while in some cases they can be corrected to represent RF characteristics at a given quiescent bias point. In addition, they can be used in measurement of the thermal resistance of a device and analysis of the type and time-dependence of processes present in a device. In using static DC IV measurements for these applications, it is assumed that the dwell time in each region is sufficiently long for device thermal and trapping processes to reach steady state at each point measured. If this is not the case, the true DC IV results may not be achieved, but a set of IV curves where each measured data point has an incorrect thermal and/or trapping dependence is obtained. In the experiment presented herein, the dependence of the results on the delay factor in IV measurements made using a Keithley 4200 DC parameter analyzer is explored for GaAs MESFET and Si MOSFET example devices. It is found that for the GaAs device that has significant trapping effects apparently possessing long time constants, the accuracy of the static IV curves is compromised if the delay time is too low. However, for the Si MOSFET, the lowest delay factor setting (fastest sweep) can be used with excellent accuracy.

THERMAL AND TRAPPING PROCESSES

Thermal and trapping effects have been shown to play a part in the measurement of static IV curves. These effects are known as “slow processes” and do not have time to occur in RF operation due to the short dwell time at each signal location; hence, pulsed IV measurement methods are often used to find the “RF IV” curves. DC IV curves, however, are still necessary in applications where the

CHARLES BAYLIS
Center for Wireless and Microwave Information Systems,
University of South Florida
Tampa, FL

LAWRENCE DUNLEAVY
AND WILLIAM CLAUSEN
Modelithics Inc.
Tampa, FL

Reprinted with permission of MICROWAVE JOURNAL® from the March 2005 issue.
qiescent bias point is not known or is changing, such as in class B, AB, E, or F operation. In static DC IV measurement, it is necessary that the slow processes have time to reach steady state at each measurement point. This can be accomplished if the sweep rate of the curve tracer is low enough that the dwell time in each measurement region is sufficiently higher than the time constant of the effect. In other instruments, which do not sweep the curves but perform steps between points, the incorporation of a delay between measurements allows the device to remain biased at each point for a longer period of time.

How long does the dwell time in each region need to be? Walker gives an approximate room-temperature time constant of a thermal effect as 156 μs,5 while Ladbrooke and Bridge conclude that thermal time constants can lie in the tens of microsecond range.9 This means that the \(V_{GS}, V_{DS} \) bias of the device must remain in the same region longer than this length of time to provide an accurate measurement. Some trapping processes are even slower, stated to be on the order of milliseconds.7 Thus, the bias placed on the device must be in the region of measurement a minimum time of 0.1 to potentially even on the order of 100 milliseconds, depending on the device and its effects, before a measurement is performed.

THE NORMALIZED DIFFERENCE UNIT

For many years, sets of current-voltage (IV) curve data have been compared qualitatively. The degree to which the sets of IV curves are correlated is often determined by visual inspection in which it is determined that the curves either match well or deviate unacceptably. Quantitative comparison provides a method of numerical analysis of IV curve differences and the ability to plot the differences in the IV curves versus a variable (such as sweep rate). The normalized difference unit, which can be used for such comparisons, is defined as:2,4

\[
NDU = \frac{1}{N} \left(\frac{1}{N} \sum_{i=1}^{N} \left| \frac{I_{DSi1} - I_{DSi2}}{I_{DSmean}} \right| \right)
\]

where \(I_{DSi1} \) and \(I_{DSi2} \) are the drain-source current values at the \(i \)th \((V_{GS},V_{DS}) \) points of measurement on the two current-voltage characteristics and \(I_{DSmean} \) is the average of the current values over all measured points from both characteristics:

\[
I_{DSmean} = \frac{1}{2N} \sum_{i=1}^{N} (I_{DSi1} + I_{DSi2})
\]

While this unit can be used to compare virtually any two sets of IV data for the same device, it is used to compare static DC IV data obtained using different delay settings in this experiment.

EXPERIMENTAL RESULTS

To examine the variation of IV measurements with dwell time and sweep rate, the DC IV characteristics of a commercial 1 W GaAs MESFET and a 7 W power Si MOSFET were measured using a Keithley 4200 Semiconductor Characterization System. The dwell time in each region during measurement was altered by adjusting the instrument delay factor (DF) to values ranging from 1 to 100. The delay factor is multiplied by a base delay time of 4.5 milliseconds to obtain the total delay time before the data is acquired at each measurement point. The NDU was used to compare the IV data measured for each DF setting to the IV curves measured for DF = 100 (delay time = 450 ms), the largest DF used in the experiment.

For the GaAs MESFET, the settings used were as follows:

Gate Forcing Function: Voltage Step
- \(V_{GS} \) Start: –2.2 V
- \(V_{GS} \) Stop: 0.7 V
- \(V_{GS} \) Step: 0.3 V
- Data Points: 6
- Gate Source Range: Best Fixed
- Gate Port Compliance: 0.1 A

Drain Forcing Function: Voltage Sweep
- \(V_{DS} \) Start: 0 V
- \(V_{DS} \) Stop: 6 V
- \(V_{DS} \) Step: 0.05 V
- Drain Source Range: Best Fixed
- Drain Port Compliance: 0.5 A
- Filter Factor: 1
- Delay Factor: Varied; Used 1, 2, 5, 10, 20, 50, 100

A DC IV measurement was performed with the above settings for delay factors of 1, 2, 5, 10, 20, 50 and 100. A filter factor of 1 was used, meaning that the base data acquisition time of 8 ms per data point is used for all measurements. Before the data is acquired, a delay time of 4.5 ms (the base delay time) multiplied by the delay factor is enforced. From observation, it appeared that the delay factor of 100 with a step size of 0.05 V yielded a sweep rate of approximately 0.1 V/s, which coincides with the rate estimated using the delay and filter factors. Similarly, use of a DF = 1 setting can be estimated to result in a sweep rate of approximately 4 V/s. For higher delay factors, the overall measurement time was significantly larger than for low delay factors, matching these expectations.

First, the repeatability of the instrument was measured by using the NDU to compare IV curves for identical DF settings. Averaging the NDU comparisons of identical measurements with DF = 1, 10 and 100 provides a repeatability noise floor of NDU = 9.98 × 10^-4, or approximately 0.001.

An examination of the IV curves shows a marked difference between the results obtained for DF = 1 and DF = 100 (see Figure 1). The NDU value expressing the difference between these results is 0.065. The largest differences in these results appear to be in the knee region and for high values of \(V_{DS} \) in the upper curves. The knee region discrepancies are suspected to be due to trapping effects, as has been seen in pre-

![Fig. 1 Comparison of the GaAs MESFET IV curves for DF=100 (solid curves) and DF=1 (dashed curves) at NDU=0.065.](image)
The discrepancies in the upper curves for large drain voltage are like-
rious experiment by the authors. The discrepancies in the upper
curves for large drain voltage are likely
due to differences in self-heating in
the devices at the time of measure-
ment.

Fig. 2 Comparison of the GaAs MESFET
IV curves for DF=100 (solid curves) and
DF=50 (dashed curves) at NDU=0.005835.

As previously noted, a delay factor
of 1 on the Keithley instrument cor-
responds to a delay time of approxi-
mately 4.5 ms. Thus, a delay factor
of 50, for which good results are ob-
tained, is estimated to correspond to
a delay time of 225 ms. While this
seems like a long time for trap effects
to reach steady state, it is quite con-
sistent with the estimate of milli-
seconds for a time constant given in Ref-
ence 10 for trap effects. In addi-
tion, the GaAs MESFET used in this
experiment does not have a gate re-
cess, which tends to cause increased
surface-state trap effects.

For each DF setting, the NDU
was computed between the IV curves
resulting from that DF setting and
the DF = 100 curves (the measure-
ment with the longest delay). The val-
ues of NDU are plotted against the
delay factor value in Figure 3, show-
ing that the difference between the
curves decreases (and hence the ac-
curacy of the DC IV measurement in-
creases) with increasing delay factor.
The measurement repeatability line
of NDU = 9.98 × 10^{-4} is also shown.
It is interesting to note that the NDU
value approaches the repeatability
NDU as the DF is increased.

This illustrates that for the “nor-
mal” setup with filter factor = 1 and
delay factor = 1, an accurate static
DC IV measurement is not obtained
for this device. However, obtaining
the set of curves for DF = 100 takes
on the order of three to five minutes.

The same experiment was repeat-
ed for the Si MOSFET. In this case, a
large difference was not noticed be-
tween the results. The NDU compar-
ing the DF = 1 to DF = 100 IV curves
is a mere NDU = 0.011, while the av-
erage instrument repeatability NDU
is 0.00278 for the MOSFET. The DF = 1
and DF = 100 curves are shown in
Figure 4. It is evident that the curves
show no large difference. In fact, the
dashed curves, which represent the
DF = 1 setting, are actually lower than
the DF = 100 curves, which should
not be the case according to observed
results concerning MOSFET device
self-heating. The NDU versus DF
plot is given in Figure 5. It can be
seen that while a decrease is observed
with increasing DF, the magnitude of
the NDU is low for all DF settings,
just above the repeatability level.
Therefore, it is concluded that this
difference may be due to measure-
ment conditions (such as, “How warm
is the device from the last measure-
ment?”). The measurements for the
LDMOS FET were made in order from DF = 1
to DF = 100. To gain insight into this,
it could be advantageous to repeat the
experiment, randomizing the order in
which these measurements are taken,
and observing whether the NDU ver-
sus DF graph changes. It appears
from the results of this experiment
that measuring with too small of a de-
lay factor would have the largest detri-
ment in the GaAs MESFET measure-
ment, while little compromise in accu-

CONCLUSION

The use of a sufficiently long
sweep rate may be necessary to
achieve an accurate static DC IV
measurement. If the sweep rate used
is too fast, thermal and trapping
processes, if present, might not reach
steady state in the region of measure-
ment for each measurement point.
However, in device operation at a qui-
escent bias point or at a low frequen-
cy, steady-state thermal and trapping
conditions are generally held at the
conditions that exist at the bias point.
From the results presented in this ar-
ticle, it is apparent that for the case of
Keithley 4200 DC IV measurements a
delay factor of 20 or so was sufficient
for accurate measurement results on
the Si MOSFET device example, while
for the GaAs MESFET example, a delay
factor of greater than about 80 was required. The presented
NDU metric is a useful tool to use in
comparing IV curves in simple studies
like this one to help confirm the ap-
propriate instrument settings to use
for a given device type.

ACKNOWLEDGMENTS

The authors would like to thank
Lee Stauffer of Keithley Instruments
for his very helpful suggestions. It is
also gratefully acknowledged that this
work was sponsored in part by a fel-
lowship grant from the Automatic RF
Techniques Group (ARFTG).
References

Charles Baylis received his BSEE and MSEE degrees from the University of South Florida (USF) in 2002 and 2004, respectively, and is presently a PhD student and adjunct instructor in the department of electrical engineering at USF, specializing in microwave transistor modeling and measurements. His master’s thesis, “Improved Current-voltage Methods for RF Transistor Characterization,” investigates the application of pulsed IV measurements toward accurate electrothermal RF characterization and was recognized with a 2004 Outstanding Thesis Award by the USF Graduate School. He is also a recipient of the 2004 Automatic RF Techniques Group (ARFTG) Microwave Measurement Student Fellowship. He has authored several papers regarding IV techniques and numerical comparison of data for transistor characterization.

Lawrence Dunleavy received his BSEE degree from Michigan Technological University in 1982, his MSEE and PhD degrees from the University of Michigan in 1984 and 1988, respectively, and was a Howard Hughes Doctoral Fellow (1984–1988). He worked for E-Systems (1982–1983) and Hughes Aircraft Co. (1984–1990) before joining the University of South Florida in 1990. He is currently a professor in the department of electrical engineering and the co-founder of the University of South Florida’s Center for Wireless and Microwave Information Systems. In 2001, he co-founded Modelithics Inc., a company involved in RF and microwave component and IC modeling solutions and related measurement services. He is a senior member of IEEE, and is very active in both the IEEE MTT Society and the Automatic RF Techniques Group (ARFTG).

William Clausen received his BSEE and MSEE degrees from the University of South Florida in 2003. Since 2002, he has been an engineer for Modelithics Inc., where he is currently involved in active device characterization and modeling. His active interests include high power, linear and noise modeling of transistors, as well as modeling solutions for new design applications.